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ABSTRACT: A novel model based on a radial basis artificial neural network and bare-bones particle swarm optimization tuned with

adaptive disturbance factor for predicting the performances of starch-based foam materials was established. The ethylene–vinyl ace-

tate/starch mass ratio, glycerin content, and NaHCO3 content were used as the input variables, whereas the tensile strength and

rebound rate were taken as the output variables of the model. The prediction results show that model predictions were in great accor-

dance with the experimental values. The root mean square error of prediction and the correlation coefficients were 0.0256 and

0.9873; this indicated the good performance of the model. The model predicted that the tensile strength of the starch-based foam

materials would decrease slowly with increasing glycerin content and showed a V-shaped variation with increasing NaHCO3 content.

The rebound rate increased with increasing glycerin content and presented an inverted V-shaped variation with increasing NaHCO3

content. The predicted results were consistent with the experimental results. VC 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016, 133,

44252.
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INTRODUCTION

Starch-based foam materials are important natural biodegrad-

able materials. Their sheets or membranes provide products for

processing various materials and can be used as raw materials

for various packing materials. They have extensive application

prospects and have attracted more and more attention in recent

years.1 Foam materials made of starch and ethylene–vinyl ace-

tate (EVA) have various excellent characteristics, including good

degradability, small density, good elasticity, and excellent heat

insulation.2,3 As a new good compound-packaging material, it

is beneficial for relieving white pollution and highly appreciated

by the industrial and academic world. To improve the mechani-

cal properties, microstructure, and degradation properties of

these materials, some crosslinking agents and plasticizer have

often been mixed with starch to get starch-based foam materials

with good comprehensive properties.4–7 Many experiments on

the composition of this starch-based foam material have been

done in actual scientific research or industrial production to

test the properties of the materials; this has enabled the opti-

mized combination of the components and corresponding

contents.8,9 Nevertheless, both material acquisition experiments

and sample testing have shown that the production of these

materials is time consuming and effort consuming and has a

low economic efficiency.10,11 If there is a theoretical mathemati-

cal model that could analyze the influence of the material com-

ponents and their contents on product performances, it could

significantly reduce the experimental load and provide impor-

tant theoretical support for experiments.12–14

In starch-based EVA foam materials, the analysis of the influ-

ence of the crosslinking agent and plasticizer contents on prod-

uct performance could offer important theoretical support for

the processing of similar materials.15,16 Hence, a mathematical

model of the influence of the EVA–starch mass ratio, crosslink-

ing agent content, and plasticizer content on product perform-

ances is discussed in this article. Zeng and Sun17 made great

contributions to studies on the establishment of similar mathe-

matical models. Therefore, a model based on a back-

propagation (BP) artificial neural network (ANN) for the per-

formance prediction of biological foam materials was estab-

lished. According to research results, the neural network model

has a high prediction precision. The predicted values are close
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to experimental values. However, the BP ANN has some short-

comings: it has a slow local search and is easily caught in local

extremum.18,19 Moreover, the model depends greatly on training

algorithms, and this restricts its applications.20,21

The radial basis function (RBF) ANN is one of the most used

models, and it has been applied in various fields. However, the

RBF ANN has various problems. For example, the performance

is directly correlated with the optimization of network weights.

Research has found that the training process could be viewed as

the optimization of the basis function center, expansion con-

stant, and connection weight. The nature of ANN training is

the optimization of network parameters.22,23 Naturally, research-

ers have tried various intelligent optimization algorithms in net-

work training; these have included genetic algorithms, particle

swarm optimization (PSO) algorithms, and fish swarm

algorithms.24,25

Therefore, in this study, we attempted to establish an RBF ANN

prediction model based on a bare-bones particle swarm optimi-

zation (BBPSO) algorithm, a well-known variant of PSO, for

starch foam materials. In the proposed model, the parameters

of the RBF ANN (connection weights, biases, and hidden cen-

ters) were optimized by the BBPSO algorithm with an adaptive

disturbance factor. This disturbance factor, a re-initialization

operator, could prevent the algorithm from trapping into a local

optimum, and a better prediction model could be established.

THEORY

Bare-Bones Particle Swarm Optimization with Adaptive

Disturbance Factor (BBPSO-AD) Algorithm

The PSO algorithm is a typical heuristic swarm intelligence

algorithm. In the search process of the standard PSO algorithm,

each particle can be viewed as a potential solution to the prob-

lem. The particle velocity and position updating formulas are as

follows26:
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where i is equal to 1, . . ., m (where m is the particle number);

xk
i;d and vk

i;d are the location and speed, respectively; x is the

inertial weight; c1 and c2 are the accelerating factors; and pk
i;d

and pk
g ;d are the local extreme value and the global extreme val-

ue, respectively.

However, the standard PSO algorithm has a premature conver-

gence problem, and it fails to achieve the optimal solution at

every execution.27,28 To improve the premature convergence

problem and the easy catching in local extremum of the PSO

algorithm, many variants have been proposed. BBPSO is a well-

known variant of the PSO algorithm; it gets rid of the tradition-

al velocity equation of PSO. Compared to the traditional PSO,

the BBPSO is probably the simplest version PSO because it

involves no inertial weight, acceleration coefficient, or velocity.

Because of its simplicity and effectiveness, it is natural to extend

or apply the BBPSO to some real problems. The updated

expression of the standard BBPSO is29
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where gk
i;d is the mean of local extreme value and global extreme

value, and ak
i;d is the deviation of local extreme value and global

extreme value, N(0,1) is the Gaussian distribution, pbk
i;d is the

best position of the ith particle, and gbk
i;d is the best global posi-

tion of the ith particle.

Although the BBPSO has shown potentials to solve different

real problems, it is still challenged by premature convergence. In

other words, it is very likely to converge to a false global opti-

mum. To improve the search efficiency, an improved BBPSO

based on an adaptive disturbance factor was proposed; it was

called the BBPSO-AD. The updated strategy is:
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where s is a disturbance factor; Gb(t) is the global extreme val-

ue, and Xi(t) is the position of i-th particle, r is a random num-

ber within [0,1]; pbs1,d
k and pbs2,d

k are two bests values, which

were chosen randomly from other particles; and f is the opti-

mized objective function.

With the adaptive disturbance factor, each particle has its own

disturbance, the value of which changes according to its conver-

gence degree and the diversity of the swarm. Different particles

may have different disturbance values even when they are in the

same iteration. At the end of our algorithm, the disturbance value

converged to zero to ensure the convergence of the swarm. Com-

pared with the standard BBPSO, we adopted the adaptive

approach to adjust the value of s on the basis of the differential

fitness value of the current global best position and the differen-

tial values of two randomly selected best positions instead of tak-

ing a constant value. When the particle has the same fitness as the

global best, this particle will be affected by a disturbance with

maximal magnitude. In this case, this disturbance, serving as a re-

initialization operator, may have prevented the algorithm from

trapping into a local optimum. The effect of the disturbance was

enhanced with decreasing differential fitness value; this was

reflected by the shrinking of the disturbance value. At the end of

BBPSO-AD, the disturbance converged to zero because all of the

best values converged to one position. As one of the necessary

conditions, this ensured the convergence of the swarm.

BBPSO-AD RBF ANN Model

The RBF ANN model is one of the mostly used forward neural

network models. Because it can approach any nonlinear function

and has good generalization, it has been applied successfully for
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modeling in various fields.30 The RBF ANN has an input layer, a

hidden layer, and an output layer. In this study, the Gaussian

function was used as the activation function31,32:

gi xkð Þ5exp 2
jjxk2cijj2

r2
i

 !
(5)

where gi xkð Þ is the output of the activation function,

xk (1� k� n) is the kth output vector; xk (1� k� n) is the kth

output vector, ci (1� i� c) is the center of basis function, ri is

the spreading constant, n is the sample number, and c is the hid-

den nodes number. The output of the network (O) is as follows:

O xkð Þ5
Xc

i51
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where wi is the connection weight.

However, the RBF ANN has various problems. For example, the

performance is directly correlated with the optimization of net-

work weights. Research has found that the training process

could be viewed as the optimization of the basis function cen-

ter, expansion constant, and connection weight, that is, the

optimization of ci, ri, and wi. Therefore, an RBF ANN model

based on the BBPSO-AD is proposed in this article. In this

model, three parameters were optimized by the BBPSO-AD.

Therefore, the particle structure [Particle(i)] was as follows:

Particle ið Þ 5 ½Wh;o; Bh;o;Cbasis2fun� (7)

where Wh,o (1� h� c) is the weight matrix, Bh,o (1� o� p) is

the deviation matrix, Cbasis-fun is the center of basis function,

and p is the output number.

MODEL ESTABLISHMENT

The experimental data in this article are the experimental results

from the existing literature.17 The experiment in this reference

used the L16(45) orthogonal test method, the crosslinking agent

was EVA–starch, the plasticizer was glycerin, the foaming agent

was NaHCO3, and the tensile strength and rebound rate of the

foaming material were tested as research targets.

After a comprehensive evaluation of the experimental data, a data-

base containing 16 data points was finally established. (details of

the experimental data were introduced in Ref. 17). The data were

divided randomly into two subsets, including training and testing

sets. To verify the network generalization, 11 (ca. 70%) and 5 (ca.

30%) data points were used to train and test, respectively.

In this study, a three-layer RBF ANN model trained by

the BBPSO-AD algorithm for the performance prediction of

starch-based foam materials was established and called the

BBPSO-AD RBF ANN. In accordance with the experimental

data, the input of the BBPSO-AD RBF ANN model should con-

tain these experimental variables, and the output should contain

the variables of the research target. Therefore, in this study, the

input layer had three nodes, namely, the EVA–starch mass ratio,

glycerin content, and NaHCO3 content. The input layer showed

influencing factors of the study object of the model.

The output layer was the performance factors of the research

goal of the model and had two nodes in this study, the tensile

strength and the rebound rate of the foam materials. The archi-

tecture of the model is shown in Figure 1.

The number of nodes in a hidden layer is generally determined

by a formula method or a trial-and-error method. In this study,

we combined them together. First, we estimated the number of

nodes in the hidden layer by the formula 2
ffiffiffiffiffiffiffi
mn
p

11 (where m

and n are the numbers of nodes in the input layer and the out-

put layer, respectively). Second, we determined the optimal

number of nodes through the trial-and-error method. Because

the established model had three input nodes and two output

nodes, the number of nodes in the hidden layer was calculated

to be five. Then, we performed a trail-and-error test by increas-

ing the number of nodes in the hidden layer from 2 to 10. The

relation curve between the prediction error and number of

nodes in the hidden layer is shown in Figure 2.

As shown in Figure 2, with increasing number nodes in the hid-

den layer, the mean square error (MSE) decreased first and then

increased. The error reached the minimum and the model

achieved the best structure (3–5–2) when there were five nodes

in the hidden layer.

Figure 1. Schematic architecture of the BBPSO-AD RBF ANN for the pre-

diction of starch-based foam materials.

Figure 2. Results of the topology studies for the optimal model. [Color

figure can be viewed in the online issue, which is available at wileyonline-

library.com.]

ARTICLE WILEYONLINELIBRARY.COM/APP

WWW.MATERIALSVIEWS.COM J. APPL. POLYM. SCI. 2016, DOI: 10.1002/APP.4425244252 (3 of 8)

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
http://onlinelibrary.wiley.com/
http://www.materialsviews.com/


The performance of this model was validated by three parame-

ters: average relative deviation (ARD), root mean square error of

prediction (RMSEP), and squared correlation coefficient (R2):
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where N is the number of sample data; �y i is the model pre-

dicted value; yi is experimental value; and yave and �y ave are

means of the experimental and predicted data, respectively.

RESULTS AND DISCUSSION

Results of the Proposed Model

In this study, a 3–5–2 BBPSO-AD RBF ANN prediction model

was established. It includes three nodes in the input layer

(EVA–starch mass ratio, glycerin content and NaHCO3 content),

five nodes in the hidden layer and two nodes in the output lay-

er (tensile strength and rebound rate).

The established model was trained and tested. Comparisons

between the tested and predicted tensile strengths and rebound

rates during the training process are shown in Figures 3 and 4.

A straight line represents an ideal model whose predictions are

equal to experimental values. A round line represents model

predictions, and the vertical distance between the round and

straight lines is the absolute error between the predicted value

and the experimental results. Obviously, the predicted tensile

strength and rebound rate by the model were very close to the

experimental values and showed good accordance. As shown by

the vertical distance between the round and straight lines, the

Figure 3. Comparison of the experimental and predicted values of the

tensile strength in the training process. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]

Figure 4. Comparison of the experimental and predicted values of the

rebound rate in the training process. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]

Figure 5. Comparison of the experimental and predicted values of the

tensile strength during the test.

Figure 6. Comparison of the experimental and predicted values of the

rebound rate in the testing set.
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model had a small prediction error and a high prediction accu-

racy. Figures 5 and 6 show the comparative curves of the tensile

strength and rebound rate between the experimental values and

model predictions in the testing set.

The test results demonstrated that the tensile strength and

rebound rate predicted by the model were in good accordance

with the experimental values; this indicated that the prediction

was reliable and accurate. Statistics on the evaluation parame-

ters of the prediction model during testing are shown in

Table I.

The model showed good prediction performances as viewed

from its prediction accuracy and correlation. This confirmed

that the established model was competent for studying the relat-

ed performances of starch-based foam materials.

Comparison of the Proposed Model with Others

To validate the combination properties of the proposed model,

we compared it with several models, including the BP ANN,

RBF ANN, PSO RBF ANN, and BBPSO-AD RBF ANN models

and support vector machine method.33,34 The convergence

curves of each ANN model are shown in Figure 7.

In Figure 7, the convergence rate of each model sped up in a

proper order. The BBPSO-AD RBF ANN model approximately

finished convergence at the 60th iteration, and the PSO RBF

ANN model also became stable at the 100th iteration. The pro-

posed model was superior to the others in terms of the conver-

gence rate and convergence precision.

To show the prediction performances of different models, the

tensile strength and rebound rate predicted by different models

were compared with the experimental values (Figures 8 and 9).

According to the distance between the predicated data point

and the straight line, the proposed model showed smaller pre-

diction errors than the others. This was manifested by the fact

that most of the predicted data points were near the straight

line, and the predicted values were nearly identical to the exper-

imental values.

The statistical data of these models are listed in Table II, and

this showed that the proposed model had a significantly higher

prediction accuracy and correlation than others.

Discussion

On the basis of the comparison of different models, the pro-

posed model was significantly superior to others in terms of

performance, predication accuracy, and correlation. This is

because it adopted the BBPSO-AD with a rapid convergence

Table I. Values of ARD, R2, and RMSEP in the Testing Set

ARD RMSEP R2

Tensile strength 0.1143 0.0206 0.9873

Resilience 0.1089 0.0119 0.9893

Average 0.1116 0.01625 0.9883

Figure 7. Convergence curves of each ANN model. [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 8. Comparison of the experimental and predicted values of the

tensile strength. [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]

Figure 9. Comparison of the experimental and predicted values of the

rebound rate. [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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speed as the training algorithm and improved the problem of

the prematurity of the algorithm through an adaptive distur-

bance factor.

The effects of the glycerin content and NaHCO3 content on the

tensile strength of the foam material are displayed in Figures 10

and 11. As shown in Figure 10, the tensile strength of the

Table II. Statistical Parameters of the Comparison Models

Resilience Tensile Strength Average

Model ARD R2 RMSEP ARD R2 RMSEP ARD R2 RMSEP

BP ANN 0.4572 0.9297 0.0976 0.3012 0.9267 0.0985 0.3792 0.9282 0.0981

RBF ANN 0.3993 0.9476 0.0765 0.2965 0.9401 0.0778 0.3479 0.9439 0.0772

PSO RBF ANN 0.2718 0.9621 0.0512 0.2616 0.9602 0.0435 0.2667 0.9612 0.0474

Support vector machine 0.2548 0.9678 0.0465 0.2540 0.9667 0.0421 0.2544 0.9673 0.0443

BBPSO-AD RBF ANN 0.1121 0.9879 0.0201 0.2017 0.9866 0.0311 0.1569 0.9873 0.0256

Figure 10. Effects of the glycerin content on the tensile strength. [Color

figure can be viewed in the online issue, which is available at wileyonline-

library.com.]

Figure 11. Effects of the NaHCO3 content on the tensile strength. [Color

figure can be viewed in the online issue, which is available at wileyonline-

library.com.]

Figure 12. Effects of the glycerin content on the rebound rate. [Color fig-

ure can be viewed in the online issue, which is available at wileyonlineli-

brary.com.]

Figure 13. Effects of the NaHCO3 content on the rebound rate. [Color

figure can be viewed in the online issue, which is available at wileyonline-

library.com.]
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starch-based foam material decreased slowly with increasing

glycerin content when the mass ratios of EVA to starch were 40

and 50%. As the glycerin content increased, the molecular flow

of the material was enhanced; this reduced the mechanical

properties of the material. When the mass ratios of EVA to

starch were 30 and 60%, there were no uniform trends. As

shown in Figure 11, the tensile strength of the starch-based

foam material decreased first and then increased with increasing

NaHCO3 content, reaching a minimum at about 3% NaHCO3.

Under a low NaHCO3 content, with increasing NaHCO3 con-

tent, the number of bubbles in the foam material increased

because of the foaming agent, whereas the contact area between

the bubbles and stress decreased; this reduced the tensile

strength. When the NaHCO3 content was saturated, excessive

bubbles expanded the contact areas between the bubbles and,

thus, resulted in a small increase in the tensile strength. The

relation curves of the glycerin content and NaHCO3 content

and the rebound rate of the foam material are presented in Fig-

ures 12 and 13.

As shown in Figure 12, the rebound rate of the starch-based

foam material increased continuously with increasing glycerin

content. This was because glycerin formed hydrogen bonds with

the hydroxyls of starch and EVA and, thus, weakened molecular

interaction, softened the molecular chain, and increased the

elasticity. However, the excessive glycerin content caused a high

rebound rate and influenced the mechanical properties of the

material. In Figure 13, the rebound rate shows a gentle inverted

V-shaped variation with increasing NaHCO3 content. The

rebound rate increased when the NaHCO3 content increased

from 0 to 3%, but it decreased when the NaHCO3 content was

higher than 3%. The theoretical reason was that under a small

NaHCO3 content, the foaming agent generated bubbles, and the

appropriate number of bubbles increased the deformation

recovery under pressure. This increased the rebound rate. When

there was a high content of NaHCO3, this produced excessive

bubbles, and this expanded the contact area between the bub-

bles. The bubbles were arranged irregularly. Under the effect of

pressure, the material deformation could not be recovered, and

this decreased the rebound rate.

CONCLUSIONS

The performance prediction model of the starch-based foam

material based on the BBPSO-AD RBF ANN could accurately

predict its tensile strength and rebound rate. The predicted val-

ues were in good accordance with the experimental values and

showed a high correlation coefficient.

The predicted values were in good accordance with the experi-

mental values.

1. The tensile strength of the starch-based foam material

decreased slowly with increasing glycerin content.

2. The tensile strength decreased first and then increased with

increasing NaHCO3 content and reached a minimum at

about 3% NaHCO3.

3. The rebound rate was positively correlated with the glycerin

content.

4. The rebound rate increased slowly at first and then

decreased slowly with increasing NaHCO3 content.

These agree with the variation laws of the experimental results.

The proposed model could provide theoretical support for the

selection of technological parameters for the processing of

starch-based foam material and could provide a new idea for

predicting the properties of other materials.
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